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AN INTE GRA L SPLINE METHOD FOR BOUNDARY LAYER EQUATIONS

by

S. G. Rubin* and P. K. Khosla**

Polytechnic Institute of New York
Aerodynamics Laboratories
Farmingdale , New York

ABSTRACT

An integral procedure using spline polynomials is described

for the two—dimensional boundary layer equations . This is a modi-

fied finite-element (NFE) formulation , wherein each term in the

equations , rather than each independent variable, is approximated

with a spline curve fit. Therefore , this is not a true finite—

element or Galerkin method and the conventional spline relation-

ships between functional and derivative values still apply. The

only difference between the present integral formulation and our

earlier differential collocation procedures is in the treatment of

the governing differential equations. The differential methods are

more suited to. non—conservation equations ; the present integral

formulation is more desirable for conservation or divergence form

of the equations. Boundary layer solutions using conventional sec-

ond—order finite—difference collocation , the second and fourth order

Keller Box Scheme, and fourth-order spline collocation or MFE methods

are compared . Conservation and non—conservation forms are considered .

This research was supported by the Air Force Office of Scientific
Research under Grant No. AFOSR 74—2635, Project No. 9781-01.

* Professor , Dept. of Mechanical and Aerospace Engineering .
** Research Assistant Professor , Dept. of Mechanical and Aerospace
Engineering.
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Finally , the extension of the MFE formulation to three—coordinate

parabolic systems and for the transonic small disturbance equations

is briefly described .
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1. Introduction

An integral procedure using spline polynomials is described

for the two dimensional boundary layer equations. This is a modi-

fied finite—element (MFE) formulation , wherein each term in the

equations, rather than each independent variable, is approximated

with a spline curve fit. Therefore , this is not a true finite-

element or Galerkin method and the conventional spline relationships

between functional and derivation values still apply . The only

difference between the present integral formulation and our earlier

(1—3) b
differential collocation procedures is in the treatment of

the governing differential equations. The differential methods are

more suited to non—conservation equations; the present integral

formulation is more desirable for conservation or divergence form of

the equations.

For the boundary layer equations in divergence form it is shown

here that the spline MFE approach is equivalent to the class of two—

point methods proposed by Keller (4~ • His second-order development

commonly termed the Keller Box Scheme* (~~ S) has been widely used

for boundary layer investigations. It has been suggested that due to

the two—point centered—difference character of this formulation , it

is second—order accurate, even for non—uniform grids. In the present

paper it is shown that when the KBS difference system is reduced to

an equivalent three—point system , the governing equations are in fact

*The two-point ~~S development reproduced herein is equivalent to theoriginal half-point difference version of the KBS only for equatioi~
in divergence form. This point is not clearly expressed by Wornom ’
in his applications of the KBS, see Section 7.

.

~ 
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only satisfied to first—order in the usual finite—difference sense;

i.e., when the truncation error is evaluated at the mesh point , 
~~~~~~

.

It is fur ther  shown that , for a model equation , a simpler procedure

for obtaining the tr idiagonal form of the KBS equations can be de-

rived from the MFE integral method , or alternatively a three-point

weighted averaging procedure . These lead directly to a single tn-

diagcnal structure, for a second-order d i f f e r e n t i a l  equation , in

place of the 2x2 block-tridiagonal system resulting from the usual

KBS formulation . The MFE approach is extended to higher order by

using cubic splines and it is shown tha t  this leads to the fourth-

order version of the KBS procedure recently applied by Wornom~~
5
~

Boundary layer solutions using conventional second-order finite-

difference collocation , the second and fourth order KBS , and fourth-

order spline collocation ~
3’9

~or MFE methods are compared . Conservation

and non—conservation form are considered . Finally, the extension

of the MPE formulation to three—coordinate parabolic systems and to the

transonic small disturbance equations is briefly described . Solutions

with this development have not yet been obtained .

2. Keller Box Scheme: Conservation Equations

Let us apply the KBS method to the following ordinary differen-

tial equation written in divergence form and with a source term F:

(au .,) F + (bu ) a a (u~,~,u; “) ; F = F(u~ 1 ( 1)

b b (U; ”) .

The KBS method considers (1) as two first—order equations, so that ,

u~ = m
(2a)

(am) = F ~ (bu)

2



The KBS finite difference ana~ og of (2a) is:

h.
u -u . = —a- (m.+m .j  j—l 2 j  j — l

(2b)
h.

(am)~~_ (am)~~~1 
= ~~ (F.÷F .~~~) + (bu)~~

_ (bu)~~~1

where h . =
J D J— l

Note that the right-hand side of (2b) ic.. simply the trapezoidal rule

applied to r~~Fd~ . The error in (2b) at (j—½) is formally O(h?)

This discretization can be interpreted as the application of a linear

polynomial for the integrand . Other polynomial forms will lead to

different formulations and can provide higher-order extensions of the

KBS method . In a subsequent section we will derive one such scheme

and show its equivalence to the fourth—order KBS applied by Wornom .

2.1 Reduction of KBS to Tridiagonal Form.

Let us eliminate the intermediate function m~ from (2b) . Solving

for mj and m~....1. we find on ~~j—1 ’ ~j ’

(a~+a. 1)m~ = ~~~~~~ (u~-u~~~ ) + ~~ (F.+F .~~~) (3a)

+ (bu)~~
_ (bu)~~~1

2a. h. (3b)
= j~

—1 (u~-u~~ 1
) - 

~~~~~
- (F~ +F~~~1) 

- (bu)~~+(bu~~ 1)

Similar expressions for m~ and m~+1 
are found on 

~~~~~~~~~ 

‘
~j+1

T by in-

crementing j. After some elimination we find

( u . ÷i
_u

~~
) - 

~~~~~ 
( u . -u~~~1

) - 

h~~ 1 (F~41+F.)- ~~ (F .+ F 1)

(4a)- ( bu) 
~~~~~~~~~~~ 

(bu) j-l 
= 

—- -
~~~~~~~~~~

.
~~~~~~

. -
~~~~~~

--
~~
- - “ .  

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
-

~~~ - — - --- -
~~



h.
With h. = - , b = constant and a~ = constant = 1, we see that

~F. +(l+~ )F.+F .2 ru. — ( l+~~) u . + ~u .  ‘ = ~~ (4b)2 j+l j  3— 1 2 ( l+~~)
-

~ 
j

+b (u~ ÷1
_u~ 

~~~ 
(l+~ )

It should be noted that for non—uniform grids (~~ l), both u~~ and

u .,, in (1) are represented by first-order accurate finite—difference

discretizations . If the truncation error is formally evaluated , at T~.,

this three—point analog of the KBS method is in fact only “first—order

accurate”. The most interesting aspect of equation (4b) is the

weighted average of the source term F; this implies a certain amount

of smoothing not found in a differential collocation method . This

three—point reduction has previously been used by Ackerberg (6)  and

others. It has not been extensively applied and appears to be more

efficient than the 2x2 KBS solution procedure . For variable a~ . as

in the case of turbulent flows, m~ appears explicitly in (4a) and

can be eliminated with (3a). The tridiagonal system is more complex.

3. Modified Finite—Element Formulation (MFE)

Equation (4b) can be derived directly by integrating equation (1)

over two adjacent intervals so that,

j

+ r [u -(bu),~-F d T ~0 m = u~ (5)

The variables u V’) and F (1 are then approximated by a polynomial oqer

each interval 
~
‘j...l’~

1j~~’ 
j 1 , ...,N. For example, with a quadratic

polynomial approximation for u over each of the intervals, and a

linear polynomial consistent with the trapezoidal rule of integration ,

for the source term F*, we obtain on 
~
“j l ’  ~~~

*A lower order polynomial for F is consistent with a quadratic approxi~-mation for deriva t~ives. The quadratic polynomial in (6) has been



-. -

u(~ ) = u~t+u~ 1(l—t) + (u~
_u
~~1

_h
~m~ )t(l_t)

F (T~) = F~t+F~~ 1
(l_t) (6)

Th~~~~1~~ 1where t h~~~

All functional values appearing in (5) are assumed to be individually

continuous, i.e., u,F,m.

Completing the integration in equation (5), we obtain

h.

~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~
- 

~~~~~~~~~~~~~~~~~~~~~~ (7a)

Differentiating (6) we recover the expression in (2b)

hu.-u. 1 = ~~
. (m.+m. ]) (7b)

- 

The expression (7b ) is also obtained by imposing continuity of rn. .

Eliminating m~ from (7a ,7b) we find

(7c)

- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~

This equation is exactly the same as (4b ) and as mentioned previously

has the advantage of being of a single tridiagonal form. This system

can more easily be solved by the usual two pass algorithm than can

the 2x2 block inversion for the KBS method and provides identical

solutions. For Ff0, (7c) is equivalent to the difference form of the

momentum equation in the Davis Coupled Scheme ~~~~~~~.

This modified finite—element formulation differs from the usual

finite—element method in that the weighting functions are unity and

polynomials are prescribed for each term in the equation rather than

for each variable. This leads to a considerable simplification and



- 
- ~~~~~~~~~~~~~~~~~~~~~~~~

--- 
~~~~

provides consistent error estimates for the method . Finally , this

procedure also applies for a variable coefficients a~~b~ ; in which

case (4a ) is recovered ; it can be made more accurate by consider-

ing higher-order polynomials. This is shown in Section 6. The

polynomial for u(1 in (6) leads to the usual finite—difference re-

lationships if instead of ( 7 a ) ,  we require the continuity of u~~~.

This leads to S(~~;2,0) of reference (2). The MFE approach does not

require this additional continuity condition.

4. Weighted Averaging

The usual three—point differencing for first and second deri-

vatives is given by:

U~ = (1~~ )h ~~~~~~~~~~~~~~~~~~~~~ (8a)

and -

u~~ = 
2 

2 Eu.~~~-(l+~ )u .+—u . ~~ (8b)
—

3

In terms of the mesh half—points , these difference formulas can be

interpreted by the following weighted averages:

m . +~m.-m  - j+½ j½  9.n j~~ (l+~ ) 
a

M. ~~+~
1
~
..-M
j ½  (9b)

where
U. -U .

— ~+1 1~m
~+½ 

— 

h~~1 (10)

u.-u.
— ~~ 

j—lm
3 ½ ~~~~~h



-- —--- ,-. -.-- —
~~~~~~

-. 
~~~~~~~~

--.- ---- 
~~
-- -

and
in. —m . rn —rn .

— j+l ~ - M — j j—l
j +½ — 

h~÷1 
‘ i-½ — 

h~

If weighted average consistent with the trapezoidal rule are

assumed in lieu of (9), we have the following formul as for m1, M.:

~~ ~+m .— — ~~~
÷ 2 2j

_ 
~~ (l+~)

-
M uj  ~rrn

With the same averaging procedure for all source terms, and the

additional conditions (10) and (11), we recover the tridiagonal form

of the KBS or modified finite-element method , equation (4). It is

interesting that as with the modified finite element approach , the

weighted averaging here is applied to the governing equation and not

the individual variable.

If the expression (9) for M~ is left in terms of m~ ( from (11)).
the 2x2 (u~m)~ system is truly second—order accurate for both m~ and

the trapezoidal averaging is only first-order accurate . Solutions

using this formulation have never been considered .

As a final note, we have conducted some sample boundary layer

calculations, both laminar and turbulent, with and without .a pressure

gradient. These results are shown in Section 7. It is significant

that neither the downstream weighted formulation (F~ S or MFE), nor the

upstream weighted formulation (usual three—point differencing) is

superior throughout. The preferred method depends on both the flow

prof i le , and significantly , the finite—difference grid . Therefore,

once again no single formulation can be interpreted as a panacea , even

for a limited class of flows, i.e., simple boundary layers.

~~~~~~~~~~~~~L



5. Fourth-Order Keller Box Scheme

Recently Wornom has used the fourth-order extension of the

KBS proposed by Keller ~~~~~~~. The extension of the usual trapezoidal

rule to fourth-order gives the following two-point Taylor series

expansion : 2

= 
~~ (g~

’+g~’ 1)- ~~ (g~
’-g 1) ÷ 0(h~ ) (13)

When applied to equations (2a), we find

h. h .
2 -

= ~~ (m.+m . 1) 
— 
y~
j— (M~ _M~~~1) (14a )

(am)~~_ ( a m ) ~~~1 (bu)~~_ ( bu)~~~ 1 + ~~ (F~ +F~~~~ )

(1 4b)

-h
~~~ ~F -F12 ‘j j—l

The primes denote differentiation with respect to . The expression

(l4a) is equivalent to one of the spline collocation formulas , see

references (1-3) and Section 6. As applied by Wornom ~~~~~~~~~ the

system (14) is closed by evaluating M~ directly from the governing

equations . This results in a 2x2 block for (u~m)~~. An alternate

procedure shown in the next section will be to- apply the spline rela-

tionships between m~ and M~ .

If we increment j to j+l and add the resulting equations to (14),

we obtain a three point version of this scheme. The resulting equa-

tions are as follows: 
-

~~~~~~~~~~~~~~~~~~~~~~ ~÷1
_ (bu) j l ~~~ 

~~~~~~

- 

h 2 (15)
2 ‘ ‘ ‘ *

E— (F —F ) ÷ (F —F )‘12 j+l j j j—l~~



u~~1~u~~1 
= ~~ [ cm~÷1+ (l+c)m~+m~~1~ (16)

-h

12 ~~~~~~~~~~~~~~~~~~~~~ ~

p 

5.1 Keller Box Schemes: Non—Divergence Equations

If we neglect the higher order terms in the two—point

formula (13), we have

h. , ,
g~—g~_1 

= ~~ (g~+g~~]) (17)

As noted earlier, this is equivalent to the application of the

trapezoidal rule and when applied to equation (2a) leads to the

second—order KBS. However, the application of the above algorithm

to the non—divergence form of the equations does not lead to the

original I~~S method Equations (2a), with a = 1, can be re-

written in non—divergence form as

u.~ = m (l8a)

m~ = bm+~ where F = F+b~~u. (18b )

Application of (17) to this set of equations leads to

h.
u~

_u
~~1 

= ~~~~~
- (m~+m~~1) (19a)

and h.
m~

_m
~~1 

~~~~~~ (b.m.+b. 1m .1+~~.+F . 1) (19b )

Using half—point differencing , as is done in the original KBS method ,

the equation (18b ) becomes

h. b.+b .
= ~~ [

~ 2 
3—1) (m +m )÷F +~~~~~’ (19c)

It is easily seen that equations (l9b) and (l9c) are identical only

for constant b, i.e., divergence form. The calculations of section 7 

- - -
~~

--- --
~~~~~ 

__ t~
_ _ _ _____ _

~
_
_ _ _~~ ~~~~~~ - - -~~~~~~~~~~~~



________ - - -~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

will show that in certain cases there can be a significant increase

in accuracy when applying (19c) in place of (l9b). The reduction

to tridiagonal form follows the same course and for variable grids

the system remains first-order accurate. For divergence form

equations the half-point differences and two—point series formulas

are identical. The accuracy of the fourth-order two—point formula

(13) for non—divergence equations has not been established as

Wornom (5) only considers the divergence form equations characterized

by (l4b). If non—divergence form is considered , i.e., (l8b), fourth—

order accurate half—point differencing gives

h. b.+b . h.2

mj~
mj...l 

= ~~~~~~~ [( J
2 

J—1~ 
~~~~~~~~~~~~~~~~~~~ 

— 
~~~~~

— 
~F~ —F~ _~)

—h 2 (20a)

~~~~~
— r3 (b~_b~ ,) ‘(m~+m~ 1)+3(m~_m~ l~ 

‘(b .+b.
1
)

_2(bm)~~+2 (bm)~~~1

and (13) leads to

= ~~ ~~~~~~~~~~~~~~~~~~~~~~~ (20b)

2

(bm+~ ) - (bm+~ )

Once again (20a) equals (20b) only for constant b.

6. Higher-Order Extension of the Modified Finite-Element Method.

The formulation of section 3 provides a consistent approach for

deriving more accurate integral approximations . This can be achieved

by using higher-order polynomials for F and u in (6). We consider

here a cubic spline polynomial. Spline approximations have been used

earlier in differential collocation procedures . The cubic

polynomial approximation over the interva l 
~~~~~~~~~~~~~~~~~~~~~~~ 

can be written

~L 
10



___ 

_ _ _

(1—3)as:

S(~~;3,l) = S(~ ) = h . m~~~1t ( l — t ) - h . m ~ t 2 ( l — t )

2 2 (21)
+u. 1(1+2t) (l—t) +u~t (3—2t)

From (21) a variety of spline relationships can be derived

among these are

M~ = ~~
— (m~~1+2m~) 

— 6 (22a)

M~ = - 
~~

— (2m~+m~~1) + 6 (22b)

Decrementing j  to j—l in (22) and subtracting the resulting equation
from (22a), we recover the two—point expression (13),

h. h.2

= ~~~~~
. (m

1
-4-m . 1

) — 
~~~~~

— (N~—M~~1) , (23)

which forms the basis of the fourth-order extension of the KBS.

Direct integration of equation (1) over two adjacent intervals,

with the polynomial expression (21) for source terms, leads to

- (bu)~~÷1 + (bu)~~_1

= ~~ ~~~~~~~~~~~~~~~~~~~~ (24)

- 

h 2 

r~
2
(F;+1_F;)÷(F;_F;_1)]

From the spline equations (22a) and (22b ) the following three-point

formula is obtained :-

u~~1~u~~ 1 
= ~~~~ [ am.÷1+ (l+ c)m.+m. 1J

2 (25)

- y~
— [a2(M~÷1

_M
~ )+(M~

_M
~~1)]



Equations (24) and (25) are identical with the fourth-order extension

of the KBS applied by Wornom (see equations (15) and (16)). Wornom

eliminates M~ from (14) with the non—divergence form of the equation

(18b) ; in the present formulation this is unnecessary as M~ is de-

termined from the spline relationships (22). A small increase in the

truncation error is introduced with (22), but the substitution of (lSb),

required by Wornom , is avoided . This can be extremely important for

more complex equations and/or multi-dimensional flows.

As a final consideration the simple quintic spline MFE is de-

veloped . This has earlier (3) been designated as S (”;5 ,l) and leads

to a sixth order formulation:

h.2

S(fl;5,l) = S(~i) = u~~1 + h.m~~1 t + -~~~~
— M .~~

h.2

+ C10(u~—u~~1) 
— h.(4m .+Grn . ~~ + ~~~~~

— (M~_3M~ l~~
’ ~

3

h.2

- [l5(u~
_u
~~1

)_h~ (7m~+8m~~1)+ -j .-- (2M~-3M. 1) t
4

+ r6(~~.-~~ 1
)_3h~ (m~+m~~1) + ± (M~_M~~1) t5

(26)

With the polynomial (26) we integrate (2a) over the interval

to obtain the sixth-order extension of the two-point Keller

formula (13) . We find

h. h.2

g
~—g~ _1 

= T1 (g~’+g~’1) ri— ~~~~~~— 1~ (27)

h.3

+ 

~~~~~~~~~ 
(g;’ + g;’_ 1 ) + 0 ( h ~~

7 )

If we complete the integration (5) using (26) for F, the sixth—order MFE

formula for (2a) becomes

12
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10 ~ j+l c j  j — l

+ r~
3F;÷1÷ ( c 3÷l)F;÷F ;_ 1 J

In addition the spline formulas from reference 3 are

~~~~~~~~~~~~~~~~~~~~~~~~ ~j~
— (u~÷1+N

4—l)u~—~
4u~~ 1) (29a)

and

M .÷1+3(1+c~)M. cM .1=

+ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ (29b)

Since F = F ( u ; ’fl), the F ’ and F ” terms in (28a ) are at most fun cti ons

of u , m ,M . The equations ( 2 8 ) ,  ( 2 9 a )  and (29b ) provide a (3x3 ) block-

tr idiagonal system for (u 1m~ M)~~ . We recall that  the second-order MFE

is a scalar system for u~ , and the fourth—order MFE is 2x2 for (u,m )..

The M~ terms in (28,29) can be eliminated by Using the differential

spline approximation to (1) in non—divergence form. This is the same

procedure used by Wornom to eliminate M~ in the fourth-order KBS

development. This was unnecessary in the fourth—order MFE formulation ,

as the spline relationships (22) were available to evaluate M~ and

maintain a (2x2) system. If a (2x2) sixth—order MFE system is pre—

ferred, it is necessary to apply the non—divergence M~ el imination 7

however, as discussed earlier this is not desirable for more complex

systems of equations.

13 
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7. Two dimensional MFE

In this section , the modified finite element method is ap-

plied with a two—dimensional equation of the following type:

Tt + (uT )
~~ 

+ (vT)~~ = 
~~

—. (T
~~
+T

~~~
) + q (30)

If we def ine

F = UT - 
~~

— TR x 1
G = V T - 2-- T (31)Re y

P = q _ T ~ ,

The above equation can be written as:

F + G  P (32)x y

In this two—dimensional case the integration is over a rectangu—

lar grid . The method can be used for other element shapes; how-

ever, we shall only consider a rectangular element in the present

investigation . Bicubic spline polynomials can be used for curve

fitting in two dimensions; however, in the present analyses ,

partial splines (11) are used for discretizing equation (32) . This

amounts to a splitting procedure , where the curve fit is made in

the x direction and then a second curve fit is made in the y di-

rection ; the order is arbitrary . This procedure has been shown

to be equivalent to the use of bicubic splines (see reference 11)

Integrating equation (32) between (x
~~1,

x
~+i

), we obtain

k. -

F. -F. + r._~. ~~~~
- G .  + (1+- )G.+G . ~iA-i a—i -2 ~. x a+l x a

2k .  - 2 (33a)
- 

~
&.. 

~~~ ~~~~~~~~~~~ + 
~~~~~~~~~~~~~~~~~~~~~~~ ~:

= S - -Z.
1 1

14
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where k~ = x
~
_x
~~1 

; = k~~~1/k.

S~ = 
~~~~~~~~~~~~~~~~~~~~~~~~~

z~ = 
~~ ~~~~~~~~~~~ } + {P~~ ±

— P X~~
_l
~~
:

Integrating over [Y~~ 1~~~÷1L with h. = y~-y~~ 1 and 
~ 

= h~÷1/ h~~ we

obtain

h .
-.1 1 

~F -F ~+ (l+r- )(F —F2 ‘~ y ’ i+l,j+L i—l,j+l’ y i+l,j i—l ,j

+ (F
~+i,~ _i_F~ _i,~~~i

) 
~

2
2 LF —(F -(F +~F )12 y L’ y’i+ L,j+l y’i— l,j+l y’i+l,j ‘ y i—l ,j

k .  

+

÷ 
~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

(G
~ ,~ +i

_G
~ ,~~_i

)

(34)
+ (G~~.1,~ ÷1

_G
~_1,~ _1)

2
a , -  2 f- 

~~~ 
L~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

+ {(Gx)i,j+l
_ (G

x)i_l ,j+l
_ (G

x)i,j_l+(Gx)i_i j_l ;:

= 
~~ ~~~~~~~~~~~~~~~~~~~~~~~~ (s1~~

_z
~~~) + (s~,~~1

_z
~,~ _1) ~

+ (z
~

)
~~~~1}
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7.1 Example: Second-order MFE for Transonic Small Disturbance

Equations

As an example of the two dimensional MFE formulation , the

transonic small disturbance equations are considered . In this

analysis only second-order accurate theory is discussed ; i.e.,

the k~ and h~ terms in the pre-rrious development are neglected .

The fourth order extension is not considered here although it

can be obtained from the equations of section 7. We include

this example here since the earlier formulation (13) of this

problem is only first-order accurate in the supersonic region .

The transonic small disturbance equations are:

+ = 0~~- - x- xx yy

where y is the ratio of specific heats , k the transonic similar-

ity parameter and ~ the velocity potential:

u = ~~ a n d v = ~~- x y

Rewriting the equation in conservation form , we obtain

+v  = 0 ,
- 2 ~x y

This equation is identical to equation (32) with

F = k u -~~~-~- u
2

and G v

p = 0

Since the equation is of mixed type, the integration must reflect

the characteristic doma in of dependence in the supersonic region .

Therefore for subsonic regions we integrate over

so that (34) applies directly. For the supersonic domain s we integrate

16 
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over [x~~ 21x~~ . ‘
~y 1,y~~ 1 

so that (34) applies with i-i—i. For

the full potential equations a similar procedure would apply.

In order to show the second—order accuracy for the supersonic

regions, equation (33a) with i-~.i—l becomes , in terms of (u,v),

[ku-~~~~
2
~~. - [ku-~~~~

2’. = 

(A x)~~~1 
(v ) .+(l+- ) (v )2 -i 2 -~a—2 2 - - x y i -x y i—i

+ (v
~
)
~~~2]

where = (Ax)1/(Ax)11 .

It is easily shown that this equation is second—order accurate in

Ax even for non—uniform grids. The y integration then leads to

(34). The final expression for (u,v) or ~ involves the nine points

on Ex
~_2~

x
~)~ ~~~~~~~~~~~ 

where the Murman—Cole (13) first-order

formula requires only five points.

8. Boundary Layer Examples

The fourth-order MFE method is applied to the parabolic boundary

layer equations written in conservation form. Comparisons are made

with second-order techniques, the fourth-order spline 4 collocation

method applied to the non-divergence differential form of the equa-

tions and the Wornom fourth-order adaption of the I~~S. Specific

examples include (1) the similarity (ordinary differential)

equations governing the laminar flow over a flat plate and at a

stagnation point , (2) the quasi—similar model equation for the

turbulent flat plate boundary layer , and (3) the non-similar

boundary layer, both laminar and turbulent, described by a

decelerating linear external velocity field (Howarth problem). In

almost all cases an exact or very accurate numerical solution is

available for comparison purposes. 



_ _ _ _  -~~~ .- - ~~~~--~~~~~~~~~~~~~ --  

The governing boundary layer equations are

+ ((f÷2~ f,jv).., = V2—~~(l—V
2)+2~v~ , (35a)

f., = f .(~~,’fl) = V 
~~~~~ 

= V , (35b)

where is the turbulent eddy viscosity defined here by the

Michel single layer model

= R 3/2F2~
2 !u~~/(27)½

F = l_exp r~.i1/A ; A = 26 E ( 2 c R e ) ½ (u .~) ~~~~

~~~ = 0.085 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

and r = y(R /2?)½ ; ~ = U
e
dX

du
2! —i

= 
dx . 

= ~ at V = 0.995 and e denotes the boundary

layer edge.

For the flat plate geometry, ~=0; for the stagnation point, R=l ;

for the Howarth flow, Ue = l-x and ~ = _2!/(l_2~ )
½ ; for laminar flow ,

= 0.

The boundary conditions are

f(~~,0) = V(!,0) = 0 and 1imV (~~,T1) = 1 . (35c)
‘Ti -.~

18
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8.1 Fourth-Order MFE Equations

Far the boundary layer flow (35) the MFE equations are given

by (22—25) with a l+~ , b = —(f+2~ f,) and F = V2-Q (l—V 2) + 2!V~

for (35a), and a = 0, b 1, F = V for (35b). The streamwise

gradients are discretized by backward or central differences. A

3x3 block—tridiagonal system for (u,M,f) results .

The boundary conditions are given by (35c); in addition , the

boundary values for m or M are given by (l4b), or (l4b ) and (22),

respectively . An alternate boundary condition , used earlier (10)

for differential splirie boundary layer calculations is given by

M (~~,0)* —~—h2
2((25—l)m 2(!,0)+~m

2(~~,0))/12 = — ~

where h2 = 

~2 ~ 
denotes the grid point normal to the surface;

= T1~ — ’T1~..1 is the local mesh width; A~ = 
~i~
!i.l is the mesh

width along the surface.

8.2 Solutions

(a) Similar Laminar Boundary Layer

The results for the similarity so1utions,(4~)=0 in (35a)~ for

flat plate (~~ 0) and stagnation point (~ =l) flows are given in

Tables 1-3 for a variable and uniform mesh, with ten intervals be—

*m (O,~~) can also be obtained from a Taylor 
series expansion at

~~~ For coarse gri~~ )this can be 
preferable to the spline re-

lationship for m (0,~~) 

~~,_ _~~_ _ _



tween the surface and the outer boundary . For the variable grid

= a~~/(l+b0~ Y~ (36)

where ~ = 8.26 , b,~ = -0.4 and a0 = 24.2538 (l+b0)~~.

Figure 1 depicts the percentage error in wall shear , for

= 1, as a function of the number of intervals. The velocity - 
-

profiles for the variable grid with ~ = 0 are given in Table 1.

The KBS4 and fourth—order MFE methods using divergence (conserva—

tion) form equations are generally the most accurate . The KBS4

method , which requires the use of the governing equation for

is slightly more accurate than MFE; however , the latter is less

time consuming and therefore, for equal accuracy the two procedures

require approximately the same CPU time. For more complex systems

of equations the MFE approach should become more favorable.

The second—order methods are inconclusive . For the flat plate

geometry and a variable grid , the KBS is excellent and the finite—

difference poor . For ~ = 0, with a uniform grid , and for the vari-

able grid ~ = 1 solution , the opposite holds; in fact, the non-

divergence finite—difference solutions are better than the divergence

KBS results. The same is true for the so—called Davis Coupled

Scheme (7) (DCS).

The solutions deteriorate , in many cases, when non-conservation

equations are considered . The KBS2 results are particularly note—

worthy in this respect, moreover , the large differences in the half-

point KBS and two—point KB S2 adaption used by Wornor~i are evident .

Non—conservation KBS4 solutions were not available.

The non-divergence spline 4 solutions are poor for the variable

grid ~ = 0 case but are significantly better for the p = 0 uniform



r

grid and ~ 
= 1 variable grid examples. Furthermore , when the

spline 4 method is applied to the equations transformed by (36),

instead of a grid generated by (36), a reasonable improvement

results.

It should be noted that the integral approach (}~~S,NFE )

would involve considerably more arithmetic if (1) the transformed

equations were considered , (2) the governing equations were more

complex or extensive (in particular, the use of the governing

equation for M~ in KBS4 requires more operations), or (3) the

equations are two—dimensional; as shown in Section 7, the complex-

ity of the integrated equations is increased significantly . On

the other hand , the non—divergence spline 4 procedure is not modi-

fied greatly in these cases; therefore, the slight decrease in ac-

curacy may be offset by its simplicity . Finally , the spline 4

procedure can be adapted in order to obtain conservation solutions

in differential form; in references (2,3) significant improvements

in accuracy were noted . This requires several additional curve

fits, but does not appear to be as complicated as the two—dimensional

KBS or MFE procedures for simple rectangular elements. For other

element shapes, the integral finite—element approach might be more

preferable.

In summary , it can be concluded that the accuracy of the results)

of any of the fourth—order methods described here 1is very dependent

on the combination of pressure gradient parameter ~ and the choice

of grid .

21
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(b) Quasi-Similar Turbulent Boundary Layer

For these calculations we assume that ~~~ = 0 an (35a), even

though the solutions do depend on (Re~ )• 
This is a fair approxi-

mation and allows us to consider an ordinary differential equation

for the turbulent boundary layer. In subsequent examples , the

full non—similar equations will be considered .

The mesh is given by the grid generated from (36), with

= -109, b0 
= 0.05 and a0 

= 60(l+b0) . The percentage error in

shear stress is depicted on Figures 2 and 3, for p = 0 and p = 0.5,

respectively . For these cases ‘
~e 

in the turbulent eddy viscosity

model is given as 24.5 and 15.8, respectively . The results for the

KBS4 and MFE are good , although less than fourth-order accurate.

This appears to be caused by the error in the numerical evaluation

of the eddy viscosity ~~ . For fixed ~~, fourth—order accuracy should

be recovered .

The non-divergence form solutions, obtained with the grid

transformation are reasonable , but somewhat erratic. The second—

order finite—difference solutions are, surprisingly , more accurate

than the divergence KBS2 results.  The non—divergence KBS2 solutions

are rather poor.

(c) Non—Similar Solutions

For the non—similar boundary layer calculations a ,b and F in

(35) are ‘defined in section 8.1. Three cases have been considered

here: (1) turbulent flow with p = 0.5; (2) laminar Howarth problem ,

arid (3) turbulent Howarth problem . In the first case the quasi-

similar solution has previously been discussed . The effects of the

non—similar terms will be examined . For case (2) the separation

point has been critically examined in many investigations; it has

~~~~~~~

- 
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been found that separation occurs at x 0.1198. In this section ,

separation point calculations for course grids are compared with

earlier solutions (12) obtained with the non-divergence spline 4

system of equations, as well as second-order methods. Finally ,

the suppression of separation for the turbulent boundary layer in

a decreasing linear external flow is described . To the authors ’

knowledge solutions for this flow have not been published . This

case is considered here, simply to demonstrate the applicability

of the I”WE method to turbulent boundary layers in adverse pressure

gradients.

The solutions are shown in Tables 4—6. For constant ~ = 0.5

the grid defined by (36) with 10 intervals in ‘
~~ is specified ;

in the eddy viscosity model. This case has previously

been treated by Wornom (5) using the KBS4 procedure. The effect

of the marching increment and comparisons with the quasi-similar

solution at Re~
=l •88X1O

6 are given in Table 4. For Wornom ’s grid

• the are given as: 0, 86x10 5, 43xlO’
~
’4, 86x10 4, 43x10 ’3, 0.17,

0.26, 0.34, 0.51, 0.68, 0.86, 1.03, 1.28, 1.50, 1.71 and 1.88 for

i1,...,l7. There is a small effect of the ~ spacing, but more

important is the assumption that ‘Tie~~
S S  throughout. This should

only be true at Re~
=lS

~
Cl06s arid therefore the final solutions have

an inherent error associated with the inaccurate ‘Tie value used for

~<1.88. A more accurate solution* would require the precise evalua-

tion of at each ! location ; however, with a crude ~ grid this is

*In a more exact calculation with 60 intervals it was found that at
R =43O,00O,~~~~1O.e e

. - --- -
.

- -
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not possible, and this leads us to believe that for the turbulent

boundary layer, the error estimates obtained with the model quasi—

similar problem are somewhat artificial .

For the laminar F~owarth problem a very coarse uniform grid ,

with h=l.0 provides reasonably accurate estimates of the separation

point, see Table 5. The MFE results are somewhat less accurate than

those obtained with the non-divergence spline ~ 
(12) method but

both are significantly better than the second—order solutions.

Some calculations were also made with the variable grid considered

for the similarity solutions. As was found with the similarity

problems, the non—divergence spline 4 results become less accurate

than those obtained with the uniform grid . Surprisingly, the MFE

solutions also deteriorate; and, for a reason that is not clear ,

these calculations require orders of magnitude more iterations for

convergence than do the spline 4 calculations or the MFE solutions

with the uniform grid . It would appear that the MFE calculations

are somewhat more sensitive to the grid generated by (36) when non—

similar flows with adverse pressure gradients are considered . The

similarity results using MFE and (36) were extremely accurate and

rapidly convergent.

For the turbulent Howarth problem , separation does not occur

for ‘<0.31 or Re~
<S8O

~
OOO; the 

~e 
value in the eddy viscosity model

is evaluated at each~ location and the transformation (36) with 60

intervals is specified in order to accurately estimate 
~
‘e~ 

The MFE

results, on Table 6, appear to be reasonable , although the accuracy

is difficult to assess. The grid is rather crude, A~~0.005, and

comparisons with other procedures were not possible.



In summary, the accuracy of the various methods described

herein appears to be dependent on a combination of (1) the prob—

lem, i.e. laminar or turbulent, constant p or variable p. (2),

the choice of the grid and (3) non-divergence or divergence form

of the equations . Generally , the fourth-order methods lead to

improvements over second—order techniques but the relative accuracy

of the fourth—order procedure is dependent on the factors just

mentioned .
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Table 1: Laminar Flat Plate (:=0): Variable Grid to 24.2538

(10 intervals)

(a) Surface Shear Stress

Conservation Form Solutions

Exact MFE }~~S4 KBS2 F.D.

0.469600 0.470362 0.469835 0.468759 0.380908

Non—Conservation Form Solutions

SPLINE4 TRANSFORMED KBS KBS2 DCS
PLANE
SPLINE4

0.438678 0.476971 0.494798 0.421500 0.488898

(b) Velocity Profiles

Conservation Form Solutions

Grid Exact KBS4 NFE KBS 2

0.0000 .00000. 0.00000 0.0000000 0.00000
0.0500 .02347 .02348 .0235044 .02343
0.1421 .06671 .06674 .0667994 .06659
0.3076 .14437 .14444 .1446144 .14412
0.6023 .28164 .28178 .2819718 .28113
1.1266 .51474 .51498 .5157463 .51364
2.0651 .83286 .83293 .8350900 .83263
3.7657 .99552 .99616 .9935382 1.01397
6.9004 1.00000 .99947 1.0010271 .99643
12.8087 1.00000 .99983 .9995595 1.00320
24.2538 1.00000 1.00000 1.0000000 1.00000

Non—Conservation Form Solutions

SPL INE 4 TRANSFORMED KBS KBS2 DCS
PLANE
S PL INE 4

0.00000000 0.0000 0.0000 0.00000 0.0000
.02192272 .0246 .0247 .02106 .0244
.06231277 .0699 .0703 .05987 .0694 -

•

.13487369 .1513 .1521 .12956 .1503

.26319919 .2949 
- 

.2963 .25264 .2936
.48176760 .5396 .5382 .46098 .5393
.78493782 .8605 .8544 .75179 .8929
.93994754 1.0187 1.0156 .97564 1.0820
.96388488 .9999 .9960 1.00253 .9969
.95144079 1.0259 1.0036 .99166 1.0687

1.00000000 1.0000 1.0000 1.00000 1.0000 
•- -_---- 
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Table 2: Laminar Flat Plate (~~ 0): Uniform Grid (h=l)

Exact (NC)S4 (NC) ~~S2 (NC)FD

(0.24%) (6.15%) (1.61%)

0.469600 0.470730 0.440743 0.47718

MFE2 MFE 4 ~~S4KBS2

(6.9%) (0.003%) Unavilable

0.437207 0.469614

Table 3 Laminar Stagnation Point (~ =l) Variable Grid to 

I

24.2538 (10 in te rva l s )

Exact (NC)F.D. (NC)S4 (NC)DCS

(1.17%) (0.141%) (1.53%)

1.23259 1.24826 1.23084 1.25140

F. D. D CS MFE Y3S 4

(0.226%) (2.39% ) (0.042%) (0.016%)

1.23538 (1.26205) 1.23311 (L.2328)

29 -•



Table 4: Turbulent Non—Similar Solutions (~ =0.5, R .,=1.88xl06, ‘e~~
5 8

~
(a) Cf x l0~

MODEL MFE (~.‘=O . 005) MFE (WORNOM GRID)
3.5473 3.9182 3 .9344

(b) VELOCITY PROFILE

GRID MODEL MFE(~~~ O.005) MFE (WORNOM GRID)
0.0000 0.0000 0.0000 0.0000
0.0500 0.1715 0.1828 0.1836
0.1421 0.3742 0.3935 0.3948
0.3076 0.5162 0.5387 0.5401
0.6023 0.6052 0.6296 0.6312
1.1266 - 0.6716 0.6980 0.6997
2.0651 0.7342 0.7624 0.7643
3.7657 0.7971 0.8269 0.8288
6.9004 0.8801 0.9110 0.9130
12.8087 0.9636 0.9810 0.9814
24.2538 1.0000 1.0000 1.0000

Table 5: 
- 

Laminar Howarth Problem: Xseparation

(NC) MFE 2
Exact Spline4 ~~E4 KBS2 F.D.

Uniform Grid 0.1196 0.1225 0.1374 0.1495
h=l.0

Variable Grid 0.1096 0.1328 0.1515
0.1198 ‘

~
‘ =24.2538
~a x



Table 6: Turbulent Howarth Problem (Re=l.88x106)

(a) Skin Friction Coefficent

0.0410 0.07l0 J0.lolo 0.l3l0J~ .1610_J
CfxlO

3 6.1360 5.286lJ4.73l8 4.2847 J3.8721 j

0.1910 0.2210 0.25 10 0.2810 0.3110

1~ xl0 3 
3.4849 3.0593 2.5985 2.0266 1.2409

(b) Velocity Profile Re =584680

.3468

Grid Location Velocity profile 11 Grid Location Velocity profile 
-
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d i f f e r e n ti a l  methods  arc more suited to non—com ;ervation equations; tEic present
i n t e g r a l  f o r m u l at i o n  is more d e s i r a b l e  for c o n s e r v a t i o n  or d iv e i ’~ cr icc  form of
the e q u a t i o n s .  Boundary layer  s o l u t i o n s  u s i ng  con v en t i o i i~i1 s econd—orde r  f i n i t e —
d i f f e r e n c e  c o l l o c a t i o n , the second and four th  order K e l l e r  Box Scheme , and four th
order sp l ir i e collocation or MFE methods  are compared.  C o n s e r v a t i o n  and non—
conservation forms are considered.  F i n a l ly ,  the ex t ens ion  of the MFE f o rmu l a t i o n
to three—coordinate parabolic systems and for the transonic small disturbance
equations is briefly described .
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